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Abstract

In this paper a methodology for identification of modal parameters of a structural system using wavelet analysis is

proposed. The proposed technique differs from the other works on using wavelet for this problem in the choice of the basis

function. A modified form of Littlewood–Paley (L–P) basis function is used for the identification of the parameters. This

basis has the advantage being more closely representing a vibrating signal. Further it is localized in frequency and hence

can be used to detect the frequency and the associated parameters better. With a modification, it is well suited for sub-band

coding to detect the parameters with desired accuracy. The current work identifies modal parameters such as natural

frequencies and mode shapes of a linear multi-degree of freedom (mdof) system using the wavelet transform. It utilizes

wavelet transform to identify natural frequencies and the corresponding mode shapes from the transient response of the

system under ambient vibration condition. The estimated natural frequencies and the mode shapes are found to be close to

the theoretical values for two simulated 3 and 5 dof systems. This demonstrates the effectiveness of the proposed

methodology for system identification.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Identification of structural systems involves an inverse procedure to identify the structural parameters from
the recorded response of real-world structures. The goal is to estimate the dynamic properties such as natural
frequencies and mode shapes of vibration, energy dissipation, permanent deformation and strength
deterioration of damaged structures from the responses of structures under different conditions like ambient
vibration, earthquakes and several other types of excitations. System identification of structures is the
preceding step for design of active and passive control of structures [1] and structural health monitoring [2–4].
Identified parameters provide design criterion for structures subjected to seismic and other loadings inducing
nonlinearity in structures [5,6].

Modal analysis of the response of structures is an important tool for identification of a structural system.
Natural frequencies of a structure depend on its mass and stiffness distributions. The deformation patterns at
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.01.037

ing author.

esses: chakraba@tcd.ie (A. Chakraborty), basub@tcd.ie (B. Basu), mira@aero.iisc.ernet.in (M. Mitra).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
A. Chakraborty et al. / Journal of Sound and Vibration 295 (2006) 827–837828
these frequencies or the mode shapes are informative of the natural characteristics of the structures. Analysis
of response signals of structures may be performed in two different paradigms: (i) time-domain analysis and
(ii) frequency-domain analysis. Several approaches to time-domain system identification has been developed
like state estimation using Kalman filter [7], stochastic analysis and modeling, recursive modeling and least-
squares method.

The classical method of frequency-domain analysis is by means of Fourier transform [8], and its algorithmic
implementation, the discrete Fourier transformation (DFT). Though DFT has been widely used for modal
analysis and other system identification tasks, it has several limitations. Fourier analysis is inherently global in
nature and fails to capture the time varying nature of a phenomenon. An approach for signal analysis, which
circumvents the above problem, is the time–frequency analysis [9–13]. In the framework of multi-resolution
time–frequency analysis, wavelet methods developed by several researchers [14–16] have been widely popular
and successful for signal analysis. Wavelets produce representation of a signal using time-limited local
functions having variable scales. Wavelet analysis has recently been used for a number of system identification
tasks [17]. There have been several research works in literature on the use of wavelet to identify the modal
parameters [18,19]. In some of these studies modal frequency, mode shapes and modal damping were
identified. Random decrement technique has been used in some studies, which is known to have certain
drawbacks. A shifted version of wavelet transform proposed by Staszewski [20] was used to detect frequencies.
This works better for closely spaced frequencies. In Ref. [18], modified Morlet wavelet was used which works
better than the traditional Morlet wavelet. Though some studies on use of wavelets have been carried out in
system identification, yet it remains to be seen how different wavelets perform or which would be the suitable
wavelet.

In this paper a methodology is proposed for identification of the modal frequencies and mode shapes of a
structure using the real version of the Harmonic wavelet transformation for time–frequency analysis. This
works better being close to vibrating signals. Further, this can be used to develop a sub-band coding leading to
the wavelet packets for better accuracy as desired. The basis is also localized in frequency and hence does not
suffer from the problem of band overlapping. The technique is presented for extracting the modal parameters
of a linear multi-degree of freedom (mdof) system by decomposition of the original signal into frequency
bands via wavelet transform, and time-dependent analysis of each band using the basic properties of
eigenvalues of vibration modes. Two example cases of 3 dof and 5 dof linear viscously damped systems have
been considered here. The vibration data are generated by simulating the response of the damped mdof
systems under free vibration conditions. The response signals are used to identify the modal parameters.

2. Harmonic wavelets

2.1. Wavelet transform

The wavelet transform has been used by researchers for several applications such as filtering, transient
analysis, time–frequency analysis, non-stationary analysis, discontinuity detection, data compression, system
identification and damage detection among many others. The capability of the wavelet for carrying out
time–frequency analysis has been exploited in this paper for the identification of modal parameters of a mdof
dynamical system.

In wavelet analysis a signal x(t), a function of time t, is expressed as a composition of several time localized
shifted and scaled basis functions, cððt� bÞ=aÞ where ‘b’ and ‘a’ are the shifting and scaling parameters,
respectively. The shift or translational parameter centers the wavelet function so that information can be
obtained about the signal around the location t ¼ b. The dilation or scale parameter, ‘a’ can be varied to
compress or extend the basis function to control the range of frequencies about which information can be
obtained in the vicinity of the location t ¼ b, by wavelet transformation. Wavelet transform converts an initial
data sequence representing a chosen length of input signal x(t) into a new 2-D sequence, which consists of the
coefficients Wcx(a,b) and is defined by

Wcxða; bÞ ¼
1ffiffiffi
a
p

Z þ1
�1

x tð Þc
t� b

a

� �
dt. (1)
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The wavelet transform is an integral transform which convolutes the wavelet basis function c(t), called the
mother wavelet with the function x(t) being analyzed to generate the wavelet coefficients. The wavelet
coefficients expressed in Eq. (1) provides temporal information of the function x(t) at a scale of ‘a’
corresponding to the frequencies at that scale given by the Fourier transformation of 1=

ffiffiffi
a
p� �

cððt� bÞ=aÞ i.e.ffiffiffi
a
p

c
_
ðaoÞe�iob; c

_
ðoÞ being the Fourier transform of the mother basis c(t). The coefficient Wcx(a,b), at a given

scale of ‘a’, is a function of a shift parameter ‘b’ which reflects the concentration of the frequencies
corresponding to the given scale, around the time t ¼ b. This property of wavelet coefficients will be used here
to analyze vibration signals corresponding to the bands of frequencies in which the natural frequencies lie and
hence are the modal bands. The analysis of the filtered signals in bands using time–frequency tools will yield
the modal properties including the mode shapes of a linear dynamical system.

2.2. Harmonic wavelet transform

Harmonic wavelet has the mother wavelet c(t) whose spectrum is exactly like a box so that its Fourier
transform ĉðoÞ is defined as

ĉðoÞ ¼
1ffiffiffiffiffiffi
2p
p if 2ppop4p,

¼ 0 elsewhere: ð2Þ

Then by calculating the inverse Fourier transform c(t), the corresponding complex wavelet is

cðtÞ ¼
ei4pt � ei2pt
� �

i2pt
(3)

with real and imaginary parts. The introduction of a complex function allows two real wavelets to be
represented by a single expression. The real part of c(t) represents an even wavelet and the imaginary part
represents an odd wavelet. The Fourier transform of the general baby wavelet, at level ‘j’ (i.e. scaled by 2j), and
translated by ‘b’, is defined as

ĉðoÞ ¼
1ffiffiffiffiffiffi
2p
p

� � ffiffiffiffiffiffiffi
2�j

p
eiob=2j

for 2pp
o
2j
p4p,

¼ 0 elsewhere. ð4Þ

On inverse Fourier transform, Eq. (4) gives

c
t� b

2j

� �
¼

ei4p ðt�bÞ=2jð Þ � ei2p ðt�bÞ=2jð Þ
� �

i2p ðt� bÞ=2j
� � . (5)

The harmonic wavelets have been found particularly suitable for vibration analysis because their harmonic
structure is similar to the naturally occurring vibration signals of the structures and therefore they correlate
well with experimental signals [21].

2.3. Modified Littlewood– Paley (L– P) basis

An equivalent of the Harmonic wavelet, when the basis function is real, is L–P wavelet. This wavelet basis
function is defined by

cðtÞ ¼
1

2p
sinð4ptÞ � sinð2ptÞ

t
. (6)

A possible variation of the wavelet is one, which retains the characteristic of the basis function (close to
transient vibration signals, i.e. oscillatory and decaying) but could reduce the frequency bandwidth of the
mother wavelet. Hence, the derived modified wavelet is called the modified L–P wavelet and has been
proposed and used by Basu and Gupta [12,13]. The shifted and scaled version of this is called the baby
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modified L–P wavelets. This wavelet basis has also been used by Basu [22,23] for damage detection in
structures.

The modified L–P basis function is defined by

cðtÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffi
s� 1
p

sinðsptÞ � sinðptÞ

t
, (7)

where s (is a scalar)41. In frequency domain the wavelet basis can be represented by

ĉðoÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðs� 1Þ
p for pp oj jpsp,

¼ 0 elsewhere. ð8Þ

By choosing appropriate values for the bandwidth, the frequency content of the mother wavelet can be
adjusted. If for numerical computation the scaling parameter is discretized as, aj ¼ sj (in an exponential scale),
then the scaled version of the mother basis function has mutually non-overlapping frequency bands and are
also orthogonal. This property can be conveniently utilized to detect natural frequencies and modal properties
for the dynamical systems as can be seen in the following sections.

3. Proposed methodology

A methodology to extract the natural frequencies, mode shapes and modal damping from the ambient free
vibration response of a linear mdof system is presented here. The responses x(t) of a n-dof classically damped
linear system under free vibration condition is governed by the differential equation

M €xþ C _xþ Kx ¼ 0 (9)

where M, C and K are the mass, damping and stiffness matrices with the over dot representing the
differentiation with respect to time. To decouple Eq. (9) into n-sdof equations, the following transformation is
used

xðtÞ ¼ UuðtÞ, (10)

where U is the modal matrix or the matrix of the mode shapes and u(t) is the vector of modal responses. The
kth modal response can be obtained from the decoupled modal equations

€uk þ 2rkonk
_uk þ o2

nk
uk ¼ 0; k ¼ 1; 2; :::; n. (11)

In Eq. (11), rk, onk
are the kth damping ratio and natural frequency respectively. The mth dof or state of

response can be represented by a linear combination of mode shapes and modal responses as

xm ¼
Xn

k¼1

fk
muk; m ¼ 1; 2; :::; n. (12)

The solution of Eq. (11) is given by

ukðtÞ ¼ e�rkonk
t C1k

cosðodk
tÞ þ C2k

sinðodk
tÞ

� 	
, (13)

where C1k
and C2k

are arbitrary constants to be obtained from the initial conditions [i.e. uk(0) and _ukð0Þ] and

odk
¼ onk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2k

q
. Eq. (13) can be written as

uk ¼ akðtÞ cos odk
tþ yk

� �
, (14)

where ak(t) is a slowly varying function of time for lightly damped system, i.e. rkhh1:0 and yk is the phase angle.
The response uk(t) can be reasonably considered to be a narrow banded signal with frequencies around odk

.

Wavelet transformation of Eq. (12) gives

Wcxmða; bÞ ¼
Pn
k¼1

fk
mWcukða; bÞ; m ¼ 1; 2; :::; n: (15)
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The normalized energy Ej(xm) for the response xm, in the frequency band corresponding to a scaling factor

aj ¼ sj with the index ‘j’, can be represented by a proportional quantity as

Ej xmð Þ1
1
a2

j

R
W 2

cxm aj ; b
� �

db; m ¼ 1; 2; :::; n: (16)

Let the natural frequencies on1 ;on2 ; :::;onn
be contained in the bands with scale or dilation parameter

indices, j1; j2; :::; jn respectively. Since, response of the kth mode uk, is narrow banded with frequencies around

odk
(where onk

� odk
2 p=ajk

; sp=ajk

� 	
, for lightly damped system) and ĉ ajo

� �
has frequencies in the jth band

within the interval p=aj ;sp=aj

� 	
Wcuk aj ; b

� �
¼
R

ukðtÞc t�b
aj

� �
dt ¼

ffiffiffiffi
aj
p R

ûk oð Þĉ ajo
� �

e�iob dw � 0 if jajk . (17)

On using Eqs. (15) and (17), one gets

Wcxm sj ; b
� �

� 0 if jajk; k ¼ 1; 2; . . . ; n

¼ fk
mWcuk ajk

; b
� �

if j ¼ jk; k ¼ 1; 2; . . . ; n:
(18)

Thus, Eqs. (16) and (18) lead to

Ej xmð Þ a0 if j ¼ jk; k ¼ 1; 2; . . . ; n;

� 0 otherwise:
(19)

To detect the bands of frequencies in which the natural frequencies lie, the energy corresponding to each
band is calculated for a particular state of response using Eq. (16). The bands, which do not contain the
natural frequencies, lead to insignificant energy contribution. Hence, the first n bands with significant energy
content are the bands where the natural frequencies are located. These bands are in increasing order
corresponding to the first ‘n’ natural frequencies, i.e. the lowest frequency band has the first natural frequency
and so on.

However, the chosen bands may lead to bands with relatively broad interval in which the natural
frequencies lie. To refine the estimates into finer intervals, so that natural frequencies could be determined to a
better precision, wavelet packets are used. This is an extension of wavelet transform to provide level by level
time–frequency description and is easily adaptable for the modified L–P basis. The wavelet packet enables
extraction of information from signals with an arbitrary time–frequency resolution satisfying the product
constraint in the time–frequency window. In this technique, to refine the estimation of the kth natural
frequency, onk

, located in the jkth band, i.e. with frequency band p=ajk
;sp=ajk

� 	
, further re-division is carried

out. If it is required to further subdivide the band in ‘M’ parts, then again an exponential scale is used to divide
the band so that the corresponding time-domain function forms a wavelet basis function. In this approach
(also sometimes, termed as sub-band coding, [24]), for the jkth band, the mother basis for the packet, cs tð Þ is
formed with the frequency domain description

ĉ
s
oð Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p d� 1ð Þ

p for pp oj jpdp

¼ 0 elsewhere, ð20Þ

where dM
¼ s [with d (a scalar)41]. The corresponding time-domain description is given by

cs tð Þ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 1ð Þ

p sin dptð Þ � sin ptð Þ
t

. (21)

The frequency band for the pth sub-band within the original jkth band is the interval dp�1p=ajk
; dpp=ajk

� 	
. The

basis function for this is denoted by csp
ajk
; b tð Þ. The wavelet coefficient in this sub-band is denoted by

Wcsp
xm ajk

; b
� �

. Using the wavelet coefficients in these sub-bands and then applying similar expression as in
Eq. (19), to estimate the relative energies in the sub-bands, the natural frequencies can be obtained more
precisely.
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Once the natural frequencies are obtained and the corresponding bands are identified, the sub-band
containing the kth natural frequency with scale parameter jk and the sub-band parameter ‘p’ are considered to
obtain the kth mode shape. From Eq. (15), we get

Wcsp
xm aj ; b
� �

¼
Xn

k¼1

fk
mWcsp

uk ajk ;b
� �

;m ¼ 1; 2; . . . ; n. (22)

Now, considering the responses of two states or dof in a mdof system, (with one arbitrarily chosen as m ¼ 1,
without loss of generality), the ratio of wavelet coefficients of the two considered degrees of freedom at an
instant of time t ¼ b, corresponding to band jk with sub-band, p, (using Eqs. (18) and (22)) yields

Yjk

m
¼

Wcsp
xm ajk

; b
� �

Wcsp
x1 ajk

; b
� � ¼ fk

m

fk
1

. (23)

Thus it is seen that the computed ratio of the wavelet coefficients are invariant with ‘b’. Hence, computing
these ratios for different states corresponding to different values of ‘m’ and assuming fj

1 ¼ 1 (without loss of
generality), the mode shape for the kth mode (in jk band with further sub-band division) can be obtained as

fk
m


 �
¼

Yjk

m

n o
; m ¼ 1; 2; . . . ; n. (24)

Thus, mode shape for any other mode can be obtained in a similar manner for k ¼ 1; 2; . . . ; n. To estimate
the modal damping of a mdof system, let us consider Eq. (14), which gives the kth modal response. This
response uk(t) is narrow banded around onk

, and is modulated by a slowly varying time function, ak tð Þ ¼

Ake
�rkonk

t where, Ak is a constant. Thus, if this expression is used to evaluate the wavelet coefficients in
Eq. (15), then the term ak(t) can be approximated by ak bð Þ ¼ Ake

�rkonk
b i.e. ak(t) evaluated at t ¼ b, and

considered as a constant over the integral. This is because, c ðt� bÞ=a
� �

is more oscillatory and faster decaying
as compared to ak(t) and is localized around t ¼ b. Further, since both cos odk

tþ yk

� �
and c ðt� bÞ=a

� �
are

narrow banded around onk
, evaluation of the integral for the wavelet coefficient for the original band, jk and

the sub-band, p containing the kth natural frequency leads to

Wcsp
xm ajk

; b
� �

¼ ~Kpk
e�rkonk

b, (25)

where ~Kpk
is a factor depending on the pth sub-band containing the onk

natural frequency. On evaluating
Eq. 25 at ‘b’ and bþ 2p=onk

� �
and taking logarithm of the ratio of these expressions, the modal damping

is obtained as

rk ¼
1

2p
ln

Wcsp
xm ajk

; b
� �

Wcsp
xm ajk

; bþ 2p=onk

� �� 	 . (26)

4. Mdof model and results

A mdof model is used to simulate the displacement response and to show the application of the proposed
identification methodology. The mdof system, as shown in Fig. 1, is considered. The displacement of the ith
mass relative to the support is denoted by xi(t). At first, simulation is carried out for a 3 dof system (n ¼ 3).
The masses are m1 ¼ 300 kg, m2 ¼ 200 kg and m3 ¼ 200 kg and the spring stiffnesses are k1 ¼ 36 000N=m,
k2 ¼ 24 000N=m and k3 ¼ 36 000N=m respectively. The damping ratio is assumed to be 5% for all modes.
mn

cn

kn
mn-1

c2

k2

c1

k1 m1

Fig. 1. mdof model.
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Fig. 2. (a) Ratio of modal responses at first natural frequency, (b) actual and estimated first mode shape of the 3 dof system (‘__’ actual, ‘o’

estimated).

Fig. 3. (a) Ratio of modal responses at second natural frequency, (b) actual and estimated second mode shape of the 3 dof system

(‘__’ actual, ‘o’ estimated).
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The system is subjected to initial displacement of x1 0ð Þ ¼ x2 0ð Þ ¼ x3 0ð Þ ¼ 1 for the 3 dof. Using these, the
ambient vibration response is simulated.

Modified L–P wavelet is used to decompose the signals into different frequency levels. Initially the response
energy is calculated for each degree of freedom in frequency bands with s ¼ 21=4 to broadly identify the bands
that contain the natural frequencies. These bands are further divided into sub-bands using wavelet packets.
Figs. 2(a), 3(a) and 4(a) represent the ratio of wavelet coefficients of displacements x2(t) and x3(t) with respect
to the wavelet coefficients of displacement x1(t) over time for the three frequency sub-bands containing the
three natural frequencies respectively. Since the response for different dof attain same phase during modal
vibration, these ratios are practically constant over time. The natural frequencies are estimated as the central
frequency of the corresponding sub-bands and the corresponding mode shapes are obtained by averaging the
ratios shown in Figs. 2(a), 3(a) and 4(a) using sub-band coding as discussed in Section 3. The results are
summarized in Table 1. Figs. 2(b), 3(b) and 4(b) show the plot of the mode shapes estimated using the
proposed method and compared with the actual for the first three modes respectively. From Figs. 2(b), 3(b)
and 4(b) and Table 1, it can be noticed that the first modal frequency along with other modal parameters are
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Table 1

Actual and estimated modal parameters of 3 dof system using modified L–P wavelet

Mode Natural frequency (rad/s) Normalized mode shape Damping ratio (%)

X1 X2 X3

Actual Estimated Actual Estimated Actual Estimated Actual Estimated

1 5.39 5.40 1.00 2.13 2.10 2.54 2.51 0.05 0.04

2 13.99 13.40 1.00 0.06 0.36 �0.63 �0.83 0.05 0.02

3 21.34 20.60 1.00 �3.19 �1.32 2.07 1.14 0.05 0.01

Fig. 4. (a) Ratio of modal responses at third natural frequency, (b) actual and estimated third mode shape of the 3 dof system (‘__’ actual,

‘o’ estimated).

Table 2(a)

Actual and estimated natural frequencies and damping ratios of 5 dof system using modified L–P wavelet with 5% damping ratios in all

modes

Mode Natural Frequency (rad/s) Damping ratio (%)

Actual Estimated Actual Estimated

1 2.84 2.88 0.05 0.04

2 7.69 7.69 0.05 0.03

3 12.35 12.59 0.05 0.02

A. Chakraborty et al. / Journal of Sound and Vibration 295 (2006) 827–837834
estimated satisfactorily, which proves the effectiveness of the proposed method. It can also be observed that
although the frequency ratios of wavelet coefficients for higher modes are constant over time, the accuracy in
estimation reduces for the higher modes. This is due to the fact that the energy content in bands containing the
higher modal frequencies reduces with increase in mode number.

To investigate the accuracy of the estimation for higher modes in further detail, a 5 dof model with two
additional masses and springs (m4 ¼ 250 kg and m5 ¼ 350 kg; k4 ¼ 20 000N=mm and k5 ¼ 15 000N=mm) are
considered while the modal damping ratio is kept as 5% for all modes. The displacement response relative to
the base is simulated using initial conditions x4 0ð Þ ¼ x5 0ð Þ ¼ 1 along with those used in the 3 dof system. The
first three modes are estimated in a similar way as in case of the 3 dof system and the results are summarized in
Tables 2(a,b). Figs. 5(a,b)–7(a,b) show the corresponding modal wavelet coefficient ratios and estimated mode
shapes for the first three modes. From these results, it can be observed that the modal frequencies and mode
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Fig. 5. (a) Ratio of modal responses at first natural frequency, (b) actual and estimated first mode shape of the 5 dof system (‘__’ actual, ‘o’

estimated).

Table 2(b)

Actual and estimated mode shapes of 5 dof system using modified L–P wavelet with 5% damping ratios in all modes

Mode Normalized mode shape

X1 X2 X3 X4 X5

Actual Estimated Actual Estimated Actual Estimated Actual Estimated

1 1.00 2.40 2.37 3.22 3.18 4.45 4.39 5.48 5.39

2 1.00 1.76 1.73 1.69 1.66 0.56 0.69 �1.49 �1.58

3 1.00 0.59 0.89 �0.18 �0.59 �1.30 �1.02 0.51 0.63

Fig. 6. (a) Ratio of modal responses at second natural frequency, (b) actual and estimated second mode shape of the 5 dof system (‘__’

actual, ‘o’ estimated).

A. Chakraborty et al. / Journal of Sound and Vibration 295 (2006) 827–837 835
shapes can be estimated with high level of accuracy for the first two modes as opposed to just only the first
modal parameters being estimated with high level of accuracy for the 3 dof system.

For the 5 dof system the estimation accuracies start deteriorating from the third mode onward and are
poorer for the last two modes. The results are consistent with the results from the 3 dof system. This indicates
that more number of modes and their modal properties can be identified with greater accuracy for systems
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Table 2(c)

Actual and estimated mode shapes of 5 dof system using modified L–P wavelet with 2% damping ratios in all modes

Mode Normalized Mode Shape

X1 X2 X3 X4 X5

Actual Estimated Actual Estimated Actual Estimated Actual Estimated

1 1.00 2.40 2.39 3.22 3.20 4.45 4.41 5.48 5.46

2 1.00 1.76 1.76 1.69 1.67 0.56 0.64 �1.49 �1.47

3 1.00 0.59 0.79 �0.18 �0.38 �1.30 �1.14 0.51 0.59

Fig. 7. (a) Ratio of modal responses at third natural frequency, (b) actual and estimated third mode shape of the 5 dof system (‘__’ actual,

‘o’ estimated).

A. Chakraborty et al. / Journal of Sound and Vibration 295 (2006) 827–837836
with relatively greater number of degrees of freedom. Also, modal damping ratios can be estimated with
reasonable accuracy with the level of accuracy deteriorating with higher modes. The higher modal damping
ratios tend to be underestimated.

To investigate the efficiency of wavelet-based system identification technique proposed, the 5 dof system is
further considered with 2% damping ratios in all modes. Rest other parameters of the system and the initial
conditions are kept unchanged. The first three mode shapes are estimated in a similar way as done earlier and
the results are presented in Table 2c. It can be seen that the mode shapes are estimated accurately for this
system even with lower level of damping as compared to the earlier one. However, it has been found that the
accuracy of prediction of modal damping ratios falls for system with low level of damping. This is possibly
because of the fact that the response and hence the wavelet coefficients decay at a very slow rate, posing
estimation problem.

5. Conclusion

In this paper a wavelet-based methodology for identification of the modal parameters of a linear mdof
system from ambient vibration records has been proposed. The key feature of the work is to present a
technique for identifying the natural frequencies, mode shapes and associated modal damping ratios of a mdof
system on the basis of wavelet packets, where the wavelet basis used is a modified form of L–P function. An
efficient wavelet-based algorithm using modified L–P basis has been used in the identification methodology,
which is computationally simple as well. The example cases shown that the methodology can estimate the
parameters accurately. The proposed method can be extended to identify system parameters under various
kinds of excitations, particularly when the input is unknown.
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